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This section is devoted to univalent mappings defined hadamard product involving a

Ruscheweyh DerivativesOp,, .
Let A stand for the class of mapping

whichever regular and one to one inthe U, 1/ = {z/|z| < 1}
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The study here is inspired by S. Khairnar & M.More [ 14 ]
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Proof : Suppose f(z)€ H(a, 5, u, A) by (1.4)
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4.2.2 Growth And Distortion Theorem
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f(z)=z S(1-a)(u-4) 22 (1.10)
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which complete the proof.
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