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Abstract:
In the given method, we suggest an improvement to the iteration of Newton's method. Derivation of
Newton's method involves an indefinite integral of the derivative of the function, and the relevant
area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite integral
by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It is shown that
the order of convergence of the new method is three, and computed results support this theory. Even
though we have shown that the order of convergence is three, in several cases, computational order
of convergence is even higher. For most of the functions we tested, the order of convergence in
Newton's method was less than two and for our method, it was always close to three.
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Introduction

In this study, authors have suggested an improvement over the Newton’s method at the
expense of one additional first derivative evaluation. Derivation of Newton’s method
involves an indefinite integral of the derivative of the function, and the relevant area is
approximated by a rectangle. Here authors have approximated this indefinite integral by a
trapezoid instead of a rectangle, and the resulted method has third-order convergence, i.e.,
the method approximately triples the number of significant digits after some iterations.
Computed results overwhelmingly support this theory, and computational order of
convergence was even more then three for certain functions.

It is important to understand how Newton’s method is constructed. At each iterative step

construct a local model of the function f (X) at the point X,, and solve for the root X, of
the local model. In Newton’s method, shown in figure 1.1, the local linear model is the
tangent drawn to the function f (X)at the contact point X, as:

M (x)=f(x )+ f'(x)(xX=x). ..(1.2)
Dennis [1983] interpreted local linear model in another way. From Newton’s theorem,
f)="f(x,)+[ f'(A)di .(1.2)
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Figure 1.1 : Newton’s iterative step.
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Figure 1.3 : Approximating the area by the trapezoid ABCD.
Dennis [1983] replaced the indefinite integral by the rectangle ABCD as shown in figure
1.2,i.e.,

[ £()d2~ f1(x,) (x=x,), .(13)

which results in the model given in equation (1.1). In this the area DCE is ignored.

A Variant of Newton’s Method

In this paper the authors have approximated the indefinite integral involved in equation (1.2) by
the trapezium ABED as shown in figure 1.3, i.e.,

[ ' (das Gj(x SO0+ 0] (1.4)
Thus, the local modal is given by
M (x) = f(xn)+(%)(x—xn)[f'(xn)+ f'(x)] ...(1.5)

It is found that not only the model (equation (1.5)) and its derivative agree with the function
f (X) and its derivative f'(X), respectively, but the second derivative of the model and the

second derivative of the function are also agreeing at the current iterate X=X _ (Fernando and

Weerakoon [1997]). Even though the model for Newton’s method matches with the values of
the slope f'(X_) of the function, it does not match with its curvature in terms of " (X ).

The next iterative point as the root of the local model (equation (1.5)) is
M n (Xn+1) = O’

- f(xn)+@j(xm—xn)[f'(xn)+f'(xM)]:o
21(x,)

" f'(xn)+ fl(xn+1)
This is an implicit scheme, which means derivative of the function at the (n +1)th iterative step

=

...(1.6)

n+1

is used to calculate the (n+1) " iterate. This difficulty is overcome by using Newton’s method

to compute the (N —i—l)th iterate on the right-hand side. Therefore, the resulting scheme is
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2f(x.)
=X, —1 L 1 =0,12,... (L7
S (RCAER ) 0
where X ., =X —%. ...(1.8)

1.3 Convergence of Method
Let « be asimple root of f(X),i.e., f(a)=0 and f'(ax)=0. Let approximate value of the

root is given by X =« +e,, where e, is the error. Using Taylor expansion f (X ) can be
written as:

f(x,)="T(a+e,)

— f(@)+ 1(@)e, + 5 (@)l + F9(a)el +O(e))

(2) 2 (3) 3
=f%(a)|e, +l f l(a)e” +l f 1(a)e” +0(e!)
2l 19 a) 3 19a)
— W (a)[e, +C,e2+C,e+0(e")], ..(1.9)
where C, =(1/j!)f D)l £ (). Similarly, using Taylor expansion,
FO(x,)=f®(a+e,)

= £ (a)[1+2C,e, +3C,e? +0O(e%)] ...(1.10)
Dividing equation (1.9) by equation (1.10) and after some simplifications, one gets,
f (Xn) 2 2 3 4
£9(x) =e, —Ce +(2C, -2C,)e, +O(e,), ...(1.11)
Substituting the results from equation (1.11) in equation (1.8), one gets,
X, =a+C,e’+(2C,—-2C2)e’ +0(e’). ..(1.12)

This value of X; .1 is used for the Taylor’s series expansion of f g (X: +1) as,
FOx.0) = FP(@) +[C.e; +(2C, —2C;)e; +O(e;) f © () + O(e;)]
= f9(a)l+2C%? +4C,(C, -C3)ed +0O(e")]  ..(113)
Adding equation (1.10) and equation (1.13),

FO(x )4+ FO(X ) =2 (”(a){l+ Ce + (c; N gcsjej +O(e§)}

...(1.14)
using equation (1.9) and equation (1.14), one gets,

2f(x,) _
[FOx,)+ FOX.)]

-1
[e, +C,e2+C,e’+0(e))] {l+ C.,e +(Cj +§C3jej +O(ej)}

2f(x,) _
[FOX)+FO(X)]

on simplifying it becomes, e — (C; +%C3j e’ +0(e)).

...(1.15)
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_ 21 (x,)

X —X - * ’
" " f ® (Xn) + f ® (Xn+1)

e, ta=e +a—[en —(Cj +%C3)e3 +O(e;‘)},

€., :(Cj +%C3Je§ +0(e’). ...(1.16)

This shows that the proposed method has third-order convergence.

1.4 Numerical Examples

The authors have demonstrated the use of their variant of Newton’s method over the classical
Newton’s method for the examples given in Table 1.1. The roots were found correct to 15
decimal places.

1.5 Conclusions

From Table 1.1 it was found that the computational order of convergence is more than three in
some cases in variant of Newton’s method, which is higher than the classical Newton’s method.
The number of function evaluations was found to be less for variant of Newton’s method as
compared to classical Newton’s method. Another important characteristic of this method is that
it does not require second or higher derivatives of the function to carry out iterations.

Table 1.1 : Examples used for comparison of Varient’s Newton method and classical Newton’s
method

S.No. Functions Root

1 x*—4x*-10=0 1.36523001341448
1 sin?x—x2+1=0 1.40449164821621
3. x> —e*=3x+2=0 0.25753028543977
4 cosXx—x=0 0.73908513321475
5 (x-1°-1=0 1.00000000000000
6 x*-10=0 1.15443469003367
7 xe* —sin®x+3cosx+5=0 207647827130%
8. x2sin2 x4 eXesxsinx _oa_ () | 4.82458931731526
9. X730 _1_ 3.00000000000000
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