INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM) PC
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048 .

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 =6.753 —
Review of Literature on Modeling Software Reliability Growth
from the Perspective of Imperfect Debugging

Jyoti, Former Assistant Professor, Government College Of Women, Bawani Khera, Bhiwani (Haryana)
Email- neer4ualways@gmail.com

Abstract

Due to the fact that OSS is having free of cost access to the tools and technology, teaching
and learning through OSS can be done in a wonderful manner. The gap of digital divide can
be filled with the novel idea of OSS. Reliability measurement is a prime concern in OSS as it
is being updated by many developegﬁf copstantly., Research is being carried to develop
SRGMs for OSS in order to check ifs* ity under different environmental conditions.
Reliability of Mozilla Firefox, Apache, Ca%‘nomemto zan be measured with the help of these
SRGMs. The reliability models that have*‘ﬁeen proposed so far for OSS can be applied to
reliability growth in particular and not in general. This is because of the reason that T&D
environment is assumed to be diff&¥ATIOIGHREPAASRGMs. With the result, a particular
SRGM is not applicable for any BerfrefEenwikartient. This has increased the need of
formulating generalised framework for OSS.

Keywords: Review of Literature, Modeling Software Reliability, Imperfect Debugging
Introduction
In today’s fast moving life, almost everything is dependent on software systems. Software
systems are developed with the intent to automate various real life functions of the most
intelligent creature of the universe, the mankind. This dependence has increased the scope
and importance of having highly reliable software in no time. The persistent and diligent
research in the development of software systems has led to the innovation of some fabulous
software products that has brought the mankind closer in order to share the experiences
across a global platform. Multipurpose satellites, space shuttles etc. have been launched so as
to forecast the things that are happening in the universe. Attempts are being made to explore
places other than the planet earth for existence of life. However, to conquer such missions,
highly advanced technology with high precision is required. Huge development costs are
incurred by real-time and mission critical systems. On the other hand, high level of risk to
human life is posed by safety critical systems. Thus, there should be no room for errors in the
development of such systems. Even though the software system is created by the most
intelligent creature of the universe, it is never failure free. The failures occur because of the
faults that are manifested in them during their development by the software developers. The
software testing team puts their best effort so as to remove the faults that are present in the
software. However, the testing cannot be performed for long because of the stringent budget
and schedule of the project management. On one hand, the project management wants all the
faults that are residing in the software to be removed by the testing team so as to increase its
reliability. On the other hand, the project management does not want to continue testing for
long and increase the testing costs==l hus, scheduled delivery, cost and reliability are the main
attributes for every software bgl eveloped: The ‘main aiMe project management is to
attain these attributes at their“bed¥ possible values so as to achieve a good image in the
market for long-term profits and survival.
Literature Review
The main aim of the testing process in the software development life cycle is to uncover all
the faults that are lying dormant in the software. Software testing is defined as the process of
executing a software system in its intended environment in order to determine whether or not
the software matches its requirement specification. Dijiskstra (1972), states that software
testing is an effective way to show the presence of underlying bugs inthe software and is not
meant to show their absence. Whenever a failure takes place, the fault that is responsible for
it is immediately repaired. The process of observing failure and removing the corresponding
fault indicates that there is an improvement in the reliability of the system. Software

Yy asms * VOLUME-19, ISSUE-II

mailto:iajesm2014@gmail.com
mailto:neer4ualways@gmail.com

INTERNATIONAL ADVANCE JOURNAL OF ENGINEERINGSCIENCE AND MANAGEMENT (IAJESM) :PC
January-June 2023, Submitted in February 2023, iajesm2014@gmail.com, ISSN -2393-8048 .

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 =6.753 —
reliability being one of the most dynamic characteristic of software quality is preferred by
both the users of the software as well as the developers of the software.

There are four types of testing methods viz. performance testing, defect testing, security
testing, and statistical testing. Statistical testing is different from other methods of testingin
the sense that statistical testing is used to measure the reliability of the software rather than
uncovering the faults. It is considered to be the most effective sampling method for
evaluating the reliability of the system and is also known as reliability testing. There are four
stages in assessing the reliability of the software.

Reliability assessment provides both the users an@s the developers a quantitative measure of
the leftover faults, decisions regardmg@“‘fwtwgre release time, softwaremaintenance in the

«A (;‘

operatonal Elonaielest Apply tests G envod
profile “religbility”

operational phase etc. For users, reltaisiTise &8sesdmmeritzprovides a confidence measure in the
quality of the software as well as their acceptability level.

Model proposed by Musa (1975) and the model developed by Musa and Okumoto (1984),
also known as Logarithmic Poisson execution time model are the two most known models
that lie in the category of execution time models. These models differ on the basis of
underlying assumptions on which they are built.

Most of the SRGMs proposed so far, are based on calendar time, as this time component is
more meaningful to the software developers, engineers and to the users of the software. A
vast literature is available on calendar time models. In the year 1979, a pioneering attempt
was done by Goel and Okumoto’s model. The models that were proposed later aimed to
incorporate various different aspects of T&D environment with the relaxation on some
assumptions. Goel and Okumoto’s (1979) model was exponential in nature.

Earlier, in NHPP modelling it was assumed that the failure process could be described by
exponential models due to the uniform operational profiles. However, most of the testing
profiles lack uniformity and thus the assumption of uniformity is not real. The testing
profiles are thus non-uniform because of various different reasons.

Many researchers proposed models exhibiting S-shaped failure curve in order to model non-
uniform testing profile. The S-shaped curve proved to be quite successful in describing the
non-uniformity of the operational profile. A number of S-shaped SRGMs have been
developed by many researchers.

Yamada et al. (1983) was the first to modify the GO model. They described testing as a two
stage process, the fault-detection process and the fault correction process. Thus, the model
proposed by Yamada et al. (1983) is known as Delayed S-shaped model. SRGMs proposed
by Ohba (1984), Bittanti et al. (1988) and Kapur and Garg (1992) are also S- shaped in
nature. However, these SRG\Msghave same mathematlcal fmw&ut they vary onthe basis of
assumptions on which they.areb R

Depending on the values of‘the"tffkKnown parameters in the model, S-shaped models exhibit
an important characteristic of describing both exponential and S-shaped growth curves.
Hence are termed as flexible models. This flexibility makes S-shaped SRGMs more
appropriate for real testing environments

Types of imperfect Debugging

In an imperfect debugging environment, Software Reliability Growth Models can be either
purely imperfect, pure fault generation models while some others may integrate both the
types of imperfect debugging. Goel (1985) first introduced the concept of imperfect
debugging. He implemented it on Jelinski and Moranda model (1972). In thesetype of
SRGMs, it was assumed that the removal rate of faults per remaining faults tends to decrease
because of imperfect debugging. This is the first type of imperfect debugging phenomenon

£ tases * VOLUME-19, ISSUE-II

mailto:iajesm2014@gmail.com

January-June 2023, Submitted in February 2023, injesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 =6.753

The second type of imperfect debugging phenomenon is related to theerror generation.
In this, the fault content by time infinity increases and is usually more than the initial fault
content. The error generation phenomenon was described by Ohba and Chou (1989) in
modelling SRGMs.

It is worth mentioning that during the early stages of research in reliability modelling, no
distinction was made between the two types of imperfect debugging and even the models
incorporating only one type of imperfect debugging phenomenon were simply named as
imperfect debugging models. Thus, earlier a proper insight regarding this topic was not
provided (Xie, 2003). The two types ofimperfectslebugging were first introduced by Zhang
et al. (2003). The number of fallurés*'eggncedlremoval attempts were used in their
modelling. A fault is generated 0n|y®wh@1 somg, fadlt is being removed. Thus, the rate of
generation of new faults is proportioral tg:the r te of original fault removals. It should be
noted that the number of failures that are :expenenced IS not same as the number of fault
removals. The facts related to imp f%ﬂ[f) enomenon were clearly illustrated by
Kapur et al. (2006) in their modey, where,theypdategrated both the types of imperfect
debugging.
Another significant factor that plays a crucial role in evaluating the reliability of the software
is testing effort. Testing effort is defined as the amount of the resources oreffort that are
utilized during the fault detection/correction process in a software system. Testing effort is
said to be directly proportional to the reliability achieved. Thus, software is said to obtain
higher reliability if more resources are consumed during the testing process. However, due to
the budget constraints, it is important to strike-off a balance between the resources utilized
and the reliability obtained.

Numerous SRGMs have been proposed by many researchers that have incorporated the
concept of testing effort (Ahmad et al., 2010a; Quadri et al., 2011; Kapur et al., 2012).
Further, a unified model was proposed by Zhang et al. (2014) with testing effort under the
imperfect debugging assumption. A SRGM was proposed by Li et al. (2015) in which the
debugging environment was taken to be imperfect with S-shaped TEF being incorporated in
the model.

Many times it is assumed that during the entire testing period, the parameters of the SRGM
remain smooth. However, it is not always the case. For instance, after analysing the failure
datasets after some days of testing, the management decides that there is a need of some
additional skilled member to join the testing team and some changes are also brought in the
strategy that was previously adopted for testing and even some advanced tools and
techniques are employed for the testing process. These attempts are made in order to speed
up the testing process. So, the ;mneters of the StiodelChadBEK e changes were made will
not be able to describe thé,testinguprocess as some model parameters may undergo change.
The kinks/jumps that are thus observed in the fault detection rate is termed as the change
point. In the literature of regression, the term two- phase regression or multiple-phase
regression is also used for change-point models. In addition to this, broken-line regression,
switching regression, two-stage least squares or segmented regression is also used (Kapur et
al., 2011a).

For hardware and software reliability, change point models play a very significant role.In
software reliability modelling, it was assumed by most researchers that the fault
detection rate remains constant and each and every fault has an equal probability of
being detected. However, the detection rate of faults depends on testing effort, testing skills,
size of the program and much more. Thus, the fault detection rate is not smooth and there is a
possibility that it can change. It is very significant to incorporate the method of change-point

—
s B)
INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING SCIENCE AND MANAGEMENT (1AJESM) l‘ C
—

e * VOLUME-19, ISSUE-II 110

mailto:iajesm2014@gmail.com

—————
JOU NAL AB! A ANT INDEXING SERVICE)
INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM) l‘ C
I

January-June 2023, Submitted in February 2023, injesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 =6.753
in order to analyse the reliability growth in the changing testing process. The SRGMs in
which the change point effect is not considered in the estimation of software reliability is not
the true representative of the actual testing environment (Zhao, 1993; Gupta, 2008).

In the process of analysing the change point, the studies that were conducted were relatedin
estimating the change point position in case of a single change point, finding out the number
of change points that are present and their positions if multiple change points exist and
determining the parameters in case the distribution function between the change point
remains same. Many authors have studied the problem of change point.

The reliability of a software can be assessed:g¢ccusately with the change point phenomenon.
SRGMs that are formulated by incorﬁ*ﬁg&the tfhange point method are considered to
express the factual software reIiabiIit? behaviour, Asimentioned above, there are chances of
no change point, only one change point apg a number of change points depending upon the
testing environment. Initially, Zhao (1993) earri Fout the studies for analysing the hardware
and software reliability by incor%fﬁ% point method. Later, a number of
researchers proposed numerous S WV gchange point concept for measuring and
predicting the software reliability (Chang, 2001;Huang, 2005; Shyur, 2003; Zhao, 1993; Zou,
2003).

SRGMs that have been proposed so far are built with diverse limitations considering
different factors. Fault Reduction factor (FRF) is one of the factors that plays a very
significant role in determining the reliability of the software system. Musa (1975) first
identified the significance of FRF for determining the reliability growth.

In the process of testing, there is often seen some sort of relationship between the faults and
the failures (Musa et al., 1987). When a user observes an unexpected software system
behaviour, the failure is said to have occurred. On the other hand, data defined incorrectly
in the software program or any other incorrect step results in a fault that further causes
failure.

References

1. A. L. Goel, Software reliability models: assumptions, limitations and applicability. IEEE
Trans. Software Engng SE-II, 1411-1423 (1985).

2. P. K. Kapur and R. B. Garg, Optimal software release policies for software reliability
growth models under imperfect debugging. RAIRO 24, 295-305 (1990).

3. P. K. Kapur, Sanjay Agarwala and Said Younes, S-shaped software reliability growth
model with imperfect fault detection. Private communication (1992).

4. S. Bittanti et al., A flexible modelling approach for software reliability growth. In
Software Reliability Modelling and Identification (Ed. S. Bittani), pp. 101-140. Springer,
Berlin (1988). y ADVAN([ENCE INDEX

5. A. L. Goel and K. OKum8to; mkime dependent error-detection rate model for software
reliability and other performance measures. IEEE Trans. Reliab. R-28, 206-211 (1979).

6. Z. Jelinski and P. B. Moranda, Software reliability research. In Statistical Computer
Performance Evaluation (Ed. W. Freiberger), pp. 465-497. Academic Press, New York
(1972).

7. T. M. Khoshgoftaar and T. G. Woodcook, Software reliability model selection, a case
study. Proc. Int. Syrup. Software Reliab. Engng, pp. 183-191 (1991).

8. J. D. Musa et al., Software Reliability: Measurement, Prediction, Application. McGraw-
Hill, New York (1987).

9. M. Ohba, Software reliability analysis models. IBM J. Res. Dev. 28, 428-443 (1984).

e * VOLUME-19, ISSUE-II 111

mailto:iajesm2014@gmail.com

