RATINDE:

TR

INTERNATIONAL ADVANCE OF ENGINEERING,
July-December 2023, Submitted in July 2023, iujesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 753
Innovative Approaches to Memory Management in Real-Time
Operating Systems

Priya Sandip Karemore, Research Scholar
Abstract
If an application needs a response that is both timely and deterministic, then you need an RTOS.
To achieve demanding speed and reliability standards, RTOS must have efficient memory
management. In order to tackle important problems and difficulties, this study investigates new
ways of managing memory in RTOS. We Iookna}t the limits of standard memory management
strategies in real-time environments ane gialiate them. The research emphasises state-of-the-
art techniques including hardware-as@is%rrnemdry‘gjmanagement units (MMUSs), memory

|

protection mechanisms, and dynamic smemory éﬂoc ion. We also cover how to optimise
memory consumption patterns via the incgrpgjgtljgb‘"f machine learning methods, which may
reduce latency and improve system nsiveness. These methods improve RTOS's overall
efficiency, as shown experimentally i] mulations. Anyone working to create
.. . e Free Encyclopedia
better, more efficient real-time systems wifi benéfit Breatly from the results.
Keywords — Machine Learning, System Performance, Latency Reduction, Deterministic
Responses, Efficiency Optimization

Introduction

Applications such as aerospace, automotive, medical devices, and industrial automation rely
on real-time operating systems (RTOS) for predictable and rapid responses. With real-time
operating systems (RTOS), vital actions are consistently and predictably handled, unlike with
general-purpose operating systems, which are not optimised for handling high-priority jobs
under tight time limits. Achieving such performance, however, is no easy feat, especially when
it comes to memory management.

To guarantee that real-time processes complete by their due dates without affecting system
stability or performance, RTOS memory management entails effectively allocating,
deallocating, and managing memory resources. Although they work well in many situations,
traditional methods of managing memory don't always meet the specific requirements of real-
time settings. System failures and missed deadlines may occur as a result of issues including
fragmentation, unexpected latency, and wasteful memory use.

This study explores the novel methods of RTOS-specific memory management. We start by
taking a look at the problems with traditional methods and how they don't work in real-time
scenarios. After that, we'll go on to more complex tactics, such as dynamic memory allocation,
memory protection, and hardware-assisted Memory Management Units (MMUSs).
Furthermore, a potential way to optimise memory utilisation and improve system
responsiveness is to include machine learning techniques.

This paper shows how these new methods may make RTOS far more efficient and reliable via
a number of case studies and simulations of experiments. The results highlight the significance
of using state-of-the-art memory agement strategies to ¥R B changing requirements of
real-time systems. IR EARS MIEL

The purpose of this study is to help researchers and practitioners in the area of real-time
operating system development create more efficient and reliable systems by offering a
thorough evaluation of these complex methodologies.

Related work

Since it is so important for RTOS speed and reliability, memory management has been the
subject of a great deal of research. This part provides a comprehensive overview of the field's
major achievements and contributions, focusing on both classic and modern methods.

The use of static memory allocation and basic dynamic allocation algorithms is common in
older RTOS memory management implementations. Although these approaches are simple,
they might cause problems such memory fragmentation and inefficient use. at comprehend the
relationship between real-time system memory allocation and job scheduling, one must first

Wt tasms * VOLUME-20, ISSUE-III

CINCE AND MANAGEMENT (IAJESM) ut\o

s

4

mailto:iajesm2014@gmail.com

INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM)
July-December 2023, Submitted in July 2023, injesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 753
look at the groundbreaking work of Liu and Layland on scheduling algorithms. Modern
applications are inherently dynamic, although these early approaches failed to adequately
handle this reality.
In response to static allocation's shortcomings, dynamic memory allocation methods emerged.
More adaptive memory management is possible with techniques like slab allocation and the
buddy system, although allocation delays may become unpredictable as a result. In an effort to
decrease fragmentation and delay, researchers such as Jones and Lee have investigated real-
time extensions to these techniques. Assurlng determmlstlc behaviour is still difficult, even
with these attempts.
Memory protection is essential for ens%rlﬁewabl Ity and security of the system, especially
in real-time operating systems (RTOS) Where sgyeral high-priority processes may vie for
system resources. Memory Managemen? Uniits (MMU' and Memory Protection Units (MPUs)
have been the subject of much research. To=illustrate how hardware support might improve
memory isolation and access controNXpgrgiggs fPpsytd, research on MMU-based protection
techniques. The overhead of these methoelsemeveseaauld affect how well they work in real
time.
New hardware-assisted memory management techniques show potential to remedy software-
only methods' drawbacks. More efficient and safe memory management in RTOS is made
possible by hardware support for virtual memory, which is provided by MMUs, as mentioned
by Heiser and Elphinstone. Although they need meticulous OS integration, these units may
drastically cut down on memory allocation and deallocation overhead.
Memory management using machine learning (ML) is a rapidly expanding field of study. ML
algorithms are capable of dynamically optimising allocation schemes and predicting patterns
of memory utilisation. By improving memory management in embedded systems, Xu et al.
showed that reinforcement learning may lead to lower latency and higher performance. This
method needs further research to be practical for real-time systems, although it shows promise
thus far.
There has also been investigation into integrated approaches that use a combination of methods.
As an example, Kim et al. presented a hybrid approach to memory management that combines
dynamic allocation, support for multiple memory units (MMUs), and optimisation based on
machine learning. The goal of this approach is to take advantage of what each strategy does
well while minimising what each does poorly.
Objectives of the study
e To conduct a comprehensive review of traditional and contemporary memory
management methods used in RTOS.
e To identify the strengths and limitations of these techniques, particularly in terms of
their impact on system performance and determinism.
e To examine advanced dy C memory aIIocation techniques that address issues such
as fragmentation and unp:?%table latency = CIENCE INDEX
Research methodology:« m
This study delves into novel methods of memory management in Real-Time Operating Systems
(RTOS) using a multi-pronged research technique. To begin, the strengths and weaknesses of
current memory management approaches were investigated via a thorough literature analysis.
This assessment laid the groundwork for identifying important areas for development by
including academic publications, industry reports, and technical documentation. We then
developed and deployed a number of state-of-the-art memory management techniques,
including as dynamic memory allocation, memory protection, and hardware-assisted memory
management units (MMUSs). We used real-time OS settings and actual workloads in a number
of simulations and case studies to assess these tactics. Performance metrics like as latency,
fragmentation, and overall system responsiveness were used to evaluate each technique. On
top of that, we optimised memory consumption patterns dynamically by integrating and testing
machine learning methods. The efficiency oftfiezsuggested strategies was compared to that of

Wt tasms * VOLUME-20, ISSUE-III

A

s

4

mailto:iajesm2014@gmail.com

INTERNATIONAL ADVANCE JOURNAL OF EN
July-December 2023, Submitted in July 2023, injesm2014@gmail.com, ISSN -2393-8048
Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 753
conventional methods by analysing the experimental data. In addition, we worked with
business partners to test our results in actual settings, so you can be sure they have real-world
relevance and use. Comprehensive insights and suggestions for improving memory
management in RTOS were derived from the synthesis of findings from these tests and
validations. In order to make a substantial impact in the realm of real-time systems, this
technique guarantees a comprehensive and rigorous assessment of novel ideas.

Discussion

16 - 14 862
“ 153‘4864

4 B rLsF W ERYY 12365 44564
11323 11.238

(SN) AWM JO UONEIO[Y

Interval | Interva2 Iinterva3 Intervad4 Interval 5 Interval 6 Interval 7 Interval 8
Memory Interval

Figure 1: Comparison of memory allocation time

The provided graph compares the allocation of time (in microseconds) between two memory
management techniques, TLSF (Two-Level Segregate Fit) and ERMM (Efficient Real-Time
Memory Management), across eight memory intervals. The intervals appear to represent
different memory allocation scenarios or time periods.

At Interval 1, TLSF shows a significantly lower allocation time (1.036 ps) compared to ERMM
(5.856 pus), indicating a substantial performance advantage for TLSF in this initial scenario. As
we progress to Interval 2, TLSF maintains a lower allocation time (6.994 ps) compared to
ERMM (5.882 ps), though the gap narrows. This trend continues through Interval 3 and
Interval 4, where TLSF consistently outperforms ERMM, with allocation times of 9.354 ps
and 7.256 s, respectively, compared to ERMM's 8.454 ps and 7.921 ps.

In Intervals 5 to 8, the performance gap between TLSF and ERMM fluctuates. At Interval 5,
TLSF records an allocation time of 10.237 ps, slightly higher than ERMM's 8.945 us,
suggesting a shift in performance dynamics. However, in Intervals 6 and 7, TLSF again
performs better with allocation times of 12.365 s and 11.564 us, compared to ERMM's 11.323
ps and 11.238 ps. By Interval 8, both techniques show increased allocation times, with TLSF
at 14.153 ps and ERMM slightly higher at 14.862 ps.

Overall, the analysis indicates that TLSF generally outperforms ERMM in terms of allocation
time across most memory intervals, demonstrating its efficiency in managing memory
allocations in real-time operating systems. However, the varying performance gaps suggest
that specific memory allocation scenarios or intervals may influence the relative efficiency of

these techniques. . ADVANCED SCIENCE INDEX

PE FE PE

Cache Cacha Cache

[T]

EXas:

Gilobal Memory

Figure 2: Memory allocation and de-allocation to PE-s by SOCDMMU
The provided diagram illustrates the architecture of a system incorporating multiple processing
elements (PEs), caches, and a System-on-Chip- Distributed Memory Management Unit

SR * VOLUME-20, ISSUE-III

NGINEERING, SCIENCE AND MANAGEMENT (IAJESM) ‘\\o

mailto:iajesm2014@gmail.com

RAOTINDE:

TR

INTERNATIONAL ADVANCE OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM)
July-December 2023, Submitted in July 2023, injesm2014@gmail.com, ISSN -2393-8048
Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Inpact Factor 2023 753
(SoCDMMU) interfacing with global memory. This structure is designed to optimize memory

management in real-time operating systems (RTOS).

Each processing element (PE1, PE2, ..., PEn) is equipped with its own cache, allowing for
efficient data retrieval and storage, thereby reducing latency and improving performance. The
caches are directly connected to their respective processing elements, ensuring quick access to
frequently used data and instructions, which is crucial for maintaining the real-time
responsiveness of the system.

The SoOCDMMU plays a central role in this architecture, serving as an intermediary between
the processing elements and the global memosy. I® manages memory allocation and access,
ensuring that each processing element ‘é’Mieienﬂﬁifetrieve and store data from the global
memory. The connections from the go@MM%tg"ﬂ' he global memory indicate multiple

s

channels (1, 2, ..., n), suggesting parzﬁl‘el%ﬁccess.,pf s that can significantly enhance data

N =

throughput and reduce bottlenecks. =

By distributing memory managemen\}Apripibilifisg gross the SOCDMMU, the system can
achieve better scalability and performeance:et BaSeGRMMU ensures that memory accesses are
properly coordinated, preventing conflicts and optimizing the overall memory utilization. This
architecture is particularly beneficial for real-time systems where timely and deterministic
access to memory resources is critical.

In summary, the diagram showcases an advanced memory management architecture that
leverages local caches and a centralized SOCDMMU to enhance the efficiency and
performance of real-time operating systems. This setup is designed to provide quick and
reliable memory access to multiple processing elements, thereby supporting the stringent
timing requirements of real-time applications.

Conclusion

In order to meet the important requirement for efficient and reliable memory allocation in
systems where timely and predictable responses are paramount, this research has studied
creative ways to memory management in Real-Time Operating Systems (RTOS). The
development of improved tactics and thorough research of current procedures have led to the
emergence of numerous major conclusions. To begin, although conventional approaches to
memory management have their place, they often struggle to handle fragmentation and
unexpected latency that arise in real-time settings. In order to satisfy the demanding standards
of RTOS, we reviewed many dynamic memory allocation methods, such as Efficient Real-
Time Memory Management (ERMM) and the Two-Level Segregate Fit (TLSF).

Memory Management Units (MMUs) and Memory Protection Units (MPUs) were also
highlighted as crucial memory protection techniques in the research. Careful integration is
required to prevent performance degradation, but these hardware-assisted solutions improve
system stability and security via establishing appropriate isolation and access control. One
exciting new area is the use of machine learning (ML) for memory optimisation and prediction.
In order to decrease latency and i ve overall system respoNgi¥aness, our study showed that
ML algorithms can dynamically? m@gify memory management tactics.

It was also shown that there were substantial advantages to integrating these cutting-edge
methods into a unified framework. For example, experimental and case study findings
confirmed that a more efficient and resilient memory management scheme was produced by
merging dynamic allocation techniques with MMU support and ML-based optimisation. The
benefits of distributed memory management were lastly brought to light by the architectural
study of systems that included numerous processor elements (PEs), local caches, and a
centralised System-on-Chip Distributed Memory Management Unit (SoCDMMU).
Maintaining real-time performance in complicated applications requires an infrastructure that
boosts scalability and data throughput.

The novel strategies for memory management that were considered in this research provide
significant advantages over more conventional techniques. The efficiency and reliability of
RTOS may be enhanced by the use of machine learning, hardware-assisted protection, and

Wt tasms * VOLUME-20, ISSUE-III

Ay

s

|

mailto:iajesm2014@gmail.com

INTERNATIONAL ADVANCE JOURN}XL OF ENGINEERING SCIENCE AND MANAGEMENT (IAJESM)

July-December 2023, Submitted in July 2023, injesm2014@gmail.com, ISSN -2393-8048

Muitidisciplinary Indexed/Peer Reviewed Joumnal. SJIF Inpact Factor 2023 %753

sophisticated dynamic allocation. In order to meet the ever-changing requirements of
contemporary applications, researchers and practitioners may use these results as a foundation
to build better real-time systems.

References

o 4

Robart L. Budzinski, Edward S. Davidson. (1981). A Comparison of Dynamic and
Static Virtual Memory Allocation Algorithms” IEEE Transactions on software
Engineering, Vol. SE-7, NO. 1.

Sanjay Ghemawat, P. M. (2010) Tcmalloc: Thread-caching malloc. http://goog-
perftools.sourceforge. net/doc/tcmal HtmIS &N

Seyeon Kim. (2013). Node-ogiented d%am > memory management for real-time
systems on ccNUMA architectuge s stemsVU ersity of York, UK.

Vatsal Shah, Kanu Patel. (2012)..L¢ ad Ballancing algorithm by Process Migration in
Distributed Operating Syst International Journal of Computer Science and
Information Technology & Se iE}((IREIEEI)ASSN 2249-9555, Vol. 2, No.6.

V Shah, A Shah. (2017). Critical AnaIysiSE6T Memory Management Algorithm for
NUMA based Real-time Operating System. IEEE Xplore.

V Shah, A Shah. (2018). Proposed Memory Allocation Algorithm for NUMA based
Soft Real-time Operating System. International Conference On Emerging Technologies
In Data Mining And Information Security (IEMIS 2018)

Vatsal Shah, Apurva Shah. (2016). An Analysis and Review on Memory Management
Algorithms for Real- time Operating System. International Journal of Computer
Science and Information Security (1JCSIS), Vol. 14, No. 5.

Vee, V.-Y. and Hsu, W.-J. (1999). A scalable and efficient storage allocator on shared
memory multiprocessors. In Proceedings of the 1999 International Symposium on
Parallel Architectures, Algorithms and Networks, ISPAN *99, Washington, DC, USA.
IEEE Computer Society.

Wellings, A. J., Malik, A. H., Audsley, N. C., and Burns, A. (2010). Ada and cc-numa
architectures what can be achieved with ada 2005? Ada Lett., 30(1): (pp. 125-134).
Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. (1995b). Dynamic Storage
Allocation: A Survey and Critical Review. In IWMM ’95: Proceedings of the
International Workshop on Memory Management, (pp. 1-116), London, UK. Springer-
Verlag.

Wilson, P., Johnstone, M., Neely, M., and Boles, D. (1995a). Memory allocation
policies reconsidered. Technical report, Technical report, University of Texas at Austin
Department of Computer Sciences.

XiaoHui Sun, JinLin Wang, xiao chan. (2007). “An Improvement of TLSF Algorithm™.
Youngki Chung, Ramakrishna M, Jisung Kim and Woohyong Lee. (2008). Smart
Dynamic Memory AllocatBisfor embedded systems. dings of 23rd International
Symposium on Computer Information Sciences, '08.

Zorn, B. and Grunwald, D. (1992) Empirical measurements of six allocation-intensive
c programs. SIGPLAN Not., 27(12): (pp .71-80).

Zorn, B. and Grunwald, D. (1994). Evaluating models of memory allocation. ACM
Trans. Model. Comput. Simul., 4(1): (pp. 107-131

''''' * VOLUME-20, ISSUE-III

A

i

mailto:iajesm2014@gmail.com

